If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+32x=64
We move all terms to the left:
2x^2+32x-(64)=0
a = 2; b = 32; c = -64;
Δ = b2-4ac
Δ = 322-4·2·(-64)
Δ = 1536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1536}=\sqrt{256*6}=\sqrt{256}*\sqrt{6}=16\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-16\sqrt{6}}{2*2}=\frac{-32-16\sqrt{6}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+16\sqrt{6}}{2*2}=\frac{-32+16\sqrt{6}}{4} $
| 3x^2-18x+23=3 | | -3n²-53n+232=ⁿ | | -3n²-53+232=ⁿ | | 4z/9+8=2 | | (q—1.06)(8q+3.24)=(2q—6.33)(4q+9.61) | | (x-1/5)+(x-2/2)=(x/3)+1 | | 3x+12=8x-2 | | x+4x+(4x+10)=163 | | 4(2x+3)=3(x+2 | | 3x+3(x-5)= | | 2x2-6x-1=0 | | 4(y+6)=74 | | z÷7+2=3 | | n/8+.5=3.5 | | P(x)=3x2+4x+5, | | (50-2y)+2y=50 | | X+.5y=50 | | 4x+3/9+29-7x/12-5x=8x+19/18 | | 144/x=18 | | 4(t–1)=-48 | | -55=-5q–6q | | 50=3p+14 | | -a+63=1 | | -2=-a+2a | | -75=10d+5d | | 18-a/3=19 | | u/3=-2 | | 3=-s-12/4 | | -10=s/6-8 | | -a/2+18=23 | | 12+8y=20 | | 1=3+d/4 |